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12 Thermodynamique des processus irréversibles
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12.1.1 Potentiels chimique et électrochimique

Lois phénoménologiques : les lois phénoménologiques de Fourier,
d’Ohm et de Fick ont été découvertes expérimentalement au XIXe siècle.
L’unification théorique de ces lois se fait dans le cadre de la
thermodynamique des processus irréversibles basée sur des relations
phénoménologiques linéaires.

Relations phénoménologiques linéaires : la théorie des processus
irréversibles aboutit à des relations linéaires entre des forces généralisées
et des courants généralisés. Ce sont des relations plus générales que les
lois de Fourier, de Fick ou d’Ohm, parce qu’elles autorisent des effets
croisés comme les effets Seebeck, Dufour ou la thermophorèse.

Relations de réciprocité d’Onsager-Casimir : au voisinage d’un état
d’équilibre thermodynamique local, où les forces généralisées sont
suffisamment petites, la structure mathématique de la thermodynamique
des phénomènes irréversibles permet de définir des relations
phénoménologiques linéaires qui sont une conséquence du second
principe. Les éléments de matrices liant les vecteurs de courants
généralisés aux vecteurs de forces généralisées satisfont des relations de
symétrie appelées relations de réciprocité d’Onsager-Casimir.
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12.2 Relations phénoménologiques linéaires
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12.2.1 Evolution thermodynamique irréversible

Evolution thermodynamique irréversible : les phénomènes irréversibles
sont décrits par la densité de source d’entropie.

σs =
1

T

{
n∑
a=1

ωaAa + τ (∇ · v)

+ js · (−∇T ) +
r∑

A=1

jA ·
(
− ∇µA − qA∇ϕ

)} (11.100)

Evolution thermodynamique irréversible : les termes de densité de
puissance sont le produit de forces généralisées et de densités de courants
généralisés.

σs =
1

T

{∑
i

Fi ji +
∑
α

Fα · jα

}
(12.1)

1 Forces généralisées scalaires : Fi où i ∈ {a, f}
2 Densités de courants généralisés scalaires : ji où i ∈ {a, f}
3 Forces généralisées vectorielles : Fα où α ∈ {s,A}
4 Densités de courants généralisés vectoriels : jα où α ∈ {s,A}
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12.2.1 Evolution thermodynamique irréversible

Evolution thermodynamique irréversible :

σs =
1

T

{∑
i

Fi ji +
∑
α

Fα · jα

}
(12.1)

Forces et densités de courant généralisés scalaires : Fi et ji

1 Affinité chimique et densité de taux de réaction : i = a

Fa = Aa et ja = ωa où a = 1, .., n

2 Taux d’expansion et contrainte scalaire : i = f

Ff = ∇ · v et jf = τ

Forces et densités de courant généralisés vectoriels : Fα et jα

1 Gradient thermique et densité de courant d’entropie : α = s

Fs = −∇T et js

2 Gradient électrochimique et densité de courant de substance : α = A

FA = −∇µA − qA∇ϕ et jA où A = 1, .., r
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12.2.2 Relations de réciprocité d’Onsager-Casimir

Deuxième principe : condition locale

σs > 0 (11.28)

Formes quadratiques : au voisinage d’un état d’équilibre les densités de
courants généralisés peuvent être exprimés comme des applications
linéaires des forces généralisées. Le principe de symétrie de Curie interdit
sur le plan structurel des couplages linéaires entre les forces de nature
scalaire et les forces de nature vectorielle. Pour satisfaire (11.28), la
densité de source d’entropie σs est la somme d’une forme quadratique des
forces scalaires Fi et d’une forme quadratique des forces vectorielles Fα,

σs =
1

T

(∑
i,j

Fi (Lij Fj) +
∑
α, β

Fα · (Lαβ · Fβ)

)
> 0 (12.2)

Eléments des matrices d’Onsager : {Lij} et {Lαβ}

1 Composantes scalaires : Lij

2 Composantes tensorielles : Lαβ

Dr. Sylvain Bréchet 12 Thermodynamique des processus irréversibles 10 / 82



12.2.2 Relations de réciprocité d’Onsager-Casimir

Forme quadratique semi-définie positive : composantes scalaires

1

T
(F1, F2, . . .)

L11 L12 · · ·
L21 L22 · · ·

...
...

. . .


F1

F2

...

 > 0 (12.3)

Forme quadratique semi-définie positive : composantes vectorielles

1

T
(F1,F2, . . .)

L11 L12 · · ·
L21 L22 · · ·

...
...

. . .


F1

F2

...

 > 0 (12.3)

Champs magnétique : les éléments des matrices d’Onsager vectorielles
sont des fonctions du champ magnétique B (cas général).

Densité de source d’entropie : (12.2)

σs =
1

T

∑
i,j

Fi Lij (s, {nA}, q)Fj

+
1

T

∑
α, β

Fα · Lαβ (s, {nA}, q,B) · Fβ > 0

(12.4)
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12.2.2 Relations de réciprocité d’Onsager-Casimir

Forces généralisées : renversement du temps

T (Fi) = εi Fi et T (Fα) = εα Fα (12.5)

Paramètres : εi = ±1 εj = ±1 εα = εβ = 1

1 Positifs : forces généralisées invariantes par renversement du temps

2 Négatifs : forces généralisées changeant de signe par renvers. du temps

Champs d’état : renversement du temps

T (s) = s et T (nA) = nA

T (q) = q et T (B) = −B
(12.6)

Température : renversement du temps

T (T ) = T (12.7)

Composantes des matrices d’Onsager : renversement du temps

T (Lij (s, {nA}, q)) = Lij (s, {nA}, q)
T (Lαβ (s, {nA}, q,B)) = Lαβ (s, {nA}, q,−B)

(12.8)
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12.2.2 Relations de réciprocité d’Onsager-Casimir

Densité de source d’entropie :

σs =
1

T

∑
i,j

Fi Lij (s, {nA}, q)Fj

+
1

T

∑
α, β

Fα · Lαβ (s, {nA}, q,B) · Fβ > 0

(12.4)

Densité de source d’entropie : somme de formes quadratiques
semi-définies positives : renversement du temps

T (σs) = σs (12.9)

Densité de source d’entropie : (12.4) renversement du temps et
permutation (i,j) et (α,β)

σs =
1

T

∑
i,j

Fi

(
εi εj Lji (s, {nA}, q)

)
Fj

+
1

T

∑
α, β

Fα ·
(
εα εβ Lβα (s, {nA}, q,−B)

)
· Fβ > 0

(12.11)
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12.2.2 Relations de réciprocité d’Onsager-Casimir

Relations de réciprocité d’Onsager-Casimir :

Lij (s, {nA}, q) = εi εj Lji (s, {nA}, q)
Lαβ (s, {nA}, q,B) = εα εβ Lβα (s, {nA}, q,−B)

(12.12)

Densité de source d’entropie : somme de formes quadratiques
semi-définies positives des forces généralisées scalaires Fi et Fj et
vectorielles Fβ et Fα

εi = εj et εα = εβ (12.13)

Relations de réciprocité d’Onsager-Casimir : (12.13) dans (12.12)

Lij (s, {nA}, q) = Lji (s, {nA}, q)
Lαβ (s, {nA}, q,B) = Lβα (s, {nA}, q,−B)

(12.14)
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12.2.3 Relations linéaires scalaires

Relations linéaires scalaires : au voisinage d’un état d’équilibre local,
les forces scalaires Fi sont suffisamment petites et les densités scalaires de
courant ji peuvent être développées au 1 er ordre en termes des forces Fj .

ji =
∑
j

Lij Fj (12.15)

1 Affinité chimique et densités de taux de réaction : i = a

Fa = Aa et ja = ωa où a = 1, .., n

2 Taux d’expansion et contrainte scalaire : i = f

Ff = ∇ · v et jf = τ

Relations linéaires scalaires : (12.15) explicitées
ωa =

n∑
b=1

LabAb + Laf ∇ · v ∀ a = 1, .., n

τ =
n∑
b=1

LfbAb + Lff ∇ · v
(12.16)
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12.2.3 Relations linéaires scalaires

Matrice d’Onsager : relations linéaires scalaires (12.16)
ω1

...
ωn
τ

 =


L11 · · · L1n L1f

...
. . .

...
...

Ln1 · · · Lnn Lnf
Lf1 · · · Lfn Lff



A1

...
An
∇ · v

 (12.17)

Relations linéaires scalaires : une seule réaction chimique aωa = LaaAa + Laf ∇ · v

τ = LfaAa + Lff ∇ · v

Matrice d’Onsager : relations linéaires scalaires : réaction chimique a(
ωa
τ

)
=

(
Laa Laf
Lfa Lff

)(
Aa

∇ · v

)
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12.2.4 Relations linéaires vectorielles

Relations linéaires vectorielles : au voisinage d’un état d’équilibre
local, les densités vectorielles de courant jα peuvent être développées au
1 er ordre en termes des forces Fβ .

jα =
∑
β

Lαβ · Fβ (12.18)

1 Gradient thermique et densité de courant d’entropie : α = s

Fs = −∇T et js

2 Gradient électrochimique et densité de courant de substance : α = A

FA = −∇µA − qA∇ϕ et jA où A = 1, .., r

Relations linéaires vectorielles : (12.18) explicitées
js = Lss · (−∇T ) +

r∑
B=1

LsB ·
(
− ∇µB − qB∇ϕ

)
∀ A = 1, .., r

jA = LAs · (−∇T ) +
r∑

B=1

LAB ·
(
− ∇µB − qB∇ϕ

)
(12.19)

Dr. Sylvain Bréchet 12 Thermodynamique des processus irréversibles 17 / 82



12.2.4 Relations linéaires vectorielles

Matrice d’Onsager : relations linéaires vectorielles (12.19)
js
j1
...
jr

 =


Lss Ls1 · · · Lsr
L1s L11 · · · L1r

...
...

. . .
...

Lrs Lr1 · · · Lrr




−∇T
−∇µ1 − q1 ∇ϕ

...
−∇µr − qr∇ϕ

 (12.20)

Relations linéaires vectorielles : une seule substance Ajs = Lss · (−∇T ) + LsA ·
(
− ∇µA − qA∇ϕ

)
jA = LAs · (−∇T ) + LAA ·

(
− ∇µA − qA∇ϕ

) (12.21)

Matrice d’Onsager : relations linéaires vectorielles (12.21) substance A(
js
jA

)
=

(
Lss LsA
LAs LAA

)(
−∇T

−∇µA − qA∇ϕ

)
(12.22)
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12.3 Réactions chimiques et frottement visqueux
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12.3.1 Couplage des réactions chimiques

Phénoménologie : les relations phénoménologiques linéaires scalaires
(12.16) décrivent l’irréversibilité associée aux réactions chimiques entre
les substances dans un milieu continu.

Volume constant :

∇ · v = 0

Relation linéaire scalaire : (12.16)

ωa =

n∑
b=1

Lab (s, {nA}, q)Ab (12.23)

Couplage des réactions chimiques : la relation (12.13) décrit un
couplage linéaire irréversible entre les réactions chimiques. En général,
l’approximation linéaire n’est pas suffisante pour décrire ce couplage de
manière adéquate. Il faut alors tenir compte du fait que les coefficients
Lab dépendent des concentrations.
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12.3.2 Frottement interne

Phénoménologie : les relations phénoménologiques linéaires scalaires
(12.16) décrivent l’irréversibilité associée au frottement interne d’une
substance dans un milieu continu.

Absence de réaction chimique : densité de taux de réaction nul

ωa = 0

Relation linéaire scalaire : (12.16)

τ = η (s, nA, q)∇ · v (12.27)

Frottement interne : la relation (12.27) lie la contrainte mécanique
scalaire τ décrivant le frottement interne au taux d’expansion ∇ · v à
travers la viscosité volumique,

η (s, nA, q) ≡ Lff +
L2
af

Laa
> 0 (12.28)
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12.3.2 Expérience - Frottement interne d’un oeuf

On génère une compression initiale en torsion identique d’un oeuf cru et
d’un oeuf cuit attachés à des ressorts spirals.

Le frottement interne, dû à la viscosité lors de la rotation du blanc d’oeuf,
est nul pour l’oeuf cuit (solide) mais non-nul pour l’oeuf cru (liquide).

Le frottement interne va amortir le mouvement harmonique oscillatoire
de l’oeuf cru mais pas celui de l’oeuf cuit.
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12.4.1 Loi de Fourier et effet Righi-Leduc

Démarche : premièrement, on déduit la loi de Fourier pour un milieu
continu en se basant sur la loi de Fourier (3.22) pour des sous-systèmes
discrets. Deuxièmement, on établit la loi de Fourier et l’effet Righi-Leduc
en se basant sur les relations linéaires vectorielles (12.21).

Système : deux sous-systèmes simples aux températures T+ et T−.

Loi de Fourier : discrète (3.22)

IQ = κ
A

`

(
T+ − T−

)
(12.29)

1 Coefficient de conductivité thermique : κ

2 Aire de la paroi : A

3 Epaisseur de la paroi : `

Formulation continue : on considère que le système est inhomogène et
que la température varie continument et linéairement de la température
maximale T+ à gauche à la température minimale T− à droite. Soit ` la
longueur entre les deux extrémités du système et r̂ le vecteur unitaire
orienté de gauche à droite.
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12.4.1 Loi de Fourier et effet Righi-Leduc

T+ I

T –jQ

r

T+

T –

Milieu continu

Système discret

A

A

Gradient de température : orienté sens croissant de T

∇T = − T+ − T−

`
r̂ (12.30)

Densité de courant de chaleur : orienté sens décroissant de T

jQ =
IQ
A
r̂ (12.31)

Loi de Fourier : continue (12.29) et (12.30) dans (12.31)

jQ = −κ∇T (12.32)
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12.4.1 Loi de Fourier et effet Righi-Leduc

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.13) décrivent l’irréversibilité associée au transport de chaleur dans un
milieu continu.

Absence de transfert de matière :

jA = 0

Densité de courant de chaleur :

jQ = T js (12.33)

Relation linéaire vectorielle : (12.33) dans (12.21)

jQ = −κ (s, nA, q,B) ·∇T (12.24)

où jQ n’est pas nécessairement colinéaire à ∇T .

Tenseur de conductivité thermique :

κ (s, nA, q,B) = T
(

Lss − LsA · L−1AA · LsA
)

(12.35)
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12.4.1 Loi de Fourier et effet Righi-Leduc

Relation linéaire vectorielle inverse :

∇T = −κ−1 (s, nA, q,B) · jQ (12.36)

Relation linéaire vectorielle : (12.36) décrit

1 Loi de Fourier : ∇T est colinéaire à jQ

2 Effet Righi-Leduc : ∇T est orthogonal à jQ

Effet Righi-Leduc : (12.36) champ d’induction magnétique B
orthogonal à jQ

∇T = −κ−1RL (s, nA, q)
(
jQ × B̂

)
où B̂ = B/‖B‖ (12.37)

jQ

Fourier

x̂

ŷ

ẑ

k

jQ

Righi-Leduc

x̂

ŷ

ẑ
B
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12.4.2 Equation de la chaleur

Substance : électrons de conduction d’un métal homogène : A = e

Référentiel du métal : au repos (11.56)

v = 0 ainsi σu = τ : ∇v = 0

Equation de continuité de l’énergie interne : (11.54)

∂t u+ ∇ · ju = σu = 0 (12.40)

Référentiel du métal : pas de transfert d’électrons (11.119)

je = 0 ainsi ju = jQ + µ̄e je = jQ (12.41)

Equation de continuité : (12.41) dans (12.40)

∂t u = −∇ · jQ (12.42)

Densité de capacité thermique : électrons de conduction

ce =
∂u

∂T

∣∣∣∣
ne

(12.44)
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12.4.2 Equation de la chaleur

Dérivée temporelle : densité d’énergie interne (12.44)

∂t u =
∂u

∂T

∣∣∣∣
ne

∂t T = ce ∂t T (12.43)

Equation de continuité : (12.43) dans (12.42)

ce ∂t T = −∇ · jQ
Loi de Fourier : (12.32) métal homogène : ∇κ = 0 et ∇2 = ∇ ·∇

∇ · jQ = ∇ · (−κ∇T ) = −κ∇2T

Diffusivité thermique :

λ =
κ

ce
(12.46)

Equation de la chaleur :

∂t T = λ∇2 T (12.45)

Cette équation de diffusion de la chaleur n’est valable qu’en absence de
courant électrique conductif jq = qe je = 0. Sinon, il faut ajouter des
termes de source de chaleur (exercice 12.3).
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12.4.3 Diffusion de la chaleur dans une barre

T+

x

Etat initial
0

Etat intermédiaire

Equation de la chaleur : (12.45) selon l’axe Ox

∂

∂t
T (x, t) = λ

∂2

∂x2
T (x, t) (12.47)

Equation aux dérivées partielles : séparation des variables

T (x, t) = A (x)B (t) (12.48)

Equations différentielles couplées : (12.48) dans (12.47)/T (x, t)

λ

A (x)

d2A (x)

dx2
= − k2 λ ainsi

d2A (x)

dx2
= − k2A (x)

1

B (t)

dB (t)

dt
= − k2 λ ainsi

dB (t)

dt
= − k2 λB (t)

(12.49)
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12.4.3 Diffusion de la chaleur dans une barre

T+

x

Etat initial
0

Etat intermédiaire

Fonction spatiale et temporelle : solutions (12.49)

A (x) = A (0) eikx

B (t) = B (0) e− k
2λt

(12.50)

Température : (12.47) solution particulière : T (x, t) = A (x)B (t)

T (x, t) = A (0)B (0) e− k
2λt eikx = T (0, 0) e− k

2λt eikx (12.51)

Toute combinaison linéaire (discrète ou continue) d’une solution (12.51)
avec un nombre d’onde k donné est une solution.

Température : (12.37) solution générale où C ∝ T (0, 0)

T (x, t) =
C

2π

∫ ∞
−∞

e− k
2λt eikx dk (12.52)
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12.4.3 Diffusion de la chaleur dans une barre

T+

x

Etat initial
0

Etat intermédiaire

Température : (12.53) : e− k
2λt eikx = e−λt (k− i

x
2λt )

2

e−
x2

4λ t

T (x, t) =
C

2π
e−

x2

4λ t

∫ ∞
−∞

e−λt (k− i
x

2λt )
2

dk (12.54)

Intégrale d’une gaussienne :∫ ∞
−∞

e−λt (k− i
x

2λt )
2

dk =

√
π

λ t
(12.55)

Température : (12.55) dans (12.54)

T (x, t) =
C√

4π λ t
exp

(
− x2

4λ t

)
(12.56)
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12.4.3 Diffusion de la chaleur dans une barre

Température :

T (x, t) =
C√

4π λ t
exp

(
− x2

4λ t

)
(12.56)

1 Etat initial : T (0, 0) =∞ et T (x, 0) = 0 si x 6= 0

2 Etat final : T (x,∞) = 0 pour tout x
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12.4.3 Diffusion de la chaleur dans une barre

T+

x

Etat initial
0

Température :

T (x, t) =
C

2π

∫ ∞
−∞

e− k
2λt eikx dk (12.52)

Température initiale :

T (x, 0) =
C

2π

∫ ∞
−∞

eikx dk (12.57)

Distribution de Dirac :

δ (x) =
1

2π

∫ ∞
−∞

eikx dk =

{
∞ si x = 0

0 si x 6= 0
(12.58)

Température initiale : point chaud où C ∝ T (0, 0)

T (x, 0) = C δ (x) =

{
∞ si x = 0

0 si x 6= 0
(12.59)
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12.4.3 Expérience - Déphasage thermique

On chauffe un barreau de cuivre de manière périodique à une de ses
extrémités grâce à un bec Bunsen mobile. La chaleur diffuse le long du
barreau.

On mesure la température le long du barreau grâce à quatre
thermocouples.

On observe un déphasage des quatre courbes de température comme
fonction du temps.
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12.4.4 Loi de Fick

Démarche : premièrement, on déduit la loi de Fick pour un milieu
continu en se basant sur la loi de Fick (3.75) pour des sous-systèmes
discrets. Deuxièmement, on établit la loi de Fick en se basant sur les
relations phénoménologiques linéaires vectorielles (12.21).

Système : deux sous-systèmes simples avec une seule substance aux
potentiels chimiques µ+

A et µ−A.

Loi de Fick : discrète (3.75)

IA = FA
A

`

(
µ+
A − µ−A

)
(12.60)

1 Coefficient de diffusion : FA

2 Aire de la paroi : A

3 Epaisseur de la paroi : `

Formulation continue : on considère que le système est inhomogène et
que le potentiel chimique varie continument et linéairement du potentiel
chimique maximal µ+

A à gauche au potentiel chimique minimal µ−A à
droite. Soit ` la longueur entre les deux extrémités du système et r̂ le
vecteur unitaire orienté de gauche à droite.
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12.4.4 Loi de Fick

A

A

Milieu continu

Système discret

mA
+

mA
+ mA

_

mA

_

r̂

jA

IA

Gradient de potentiel chimique : orienté sens croissant de µA

∇µA = −
µ+
A − µ−A
`

r̂ (12.61)

Densité de courant de matière : orienté sens décroissant de µA

jA =
IA
A
r̂ (12.62)

Loi de Fick : continue (12.60) et (12.61) dans (12.62)

jA = −FA∇µA (12.63)
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12.4.4 Loi de Fick

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée au transport de matière dans un
milieu continu.

Substance électriquement neutre :

qA = 0

Température uniforme :

∇T = 0

Relation linéaire vectorielle : (12.65)

jA = −FA (s, nA)∇µA (12.65)

où jA est nécessairement colinéaire à ∇µA.

Coefficient de diffusion chimique : substance A

FA = LAA
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12.4.5 Equation de la diffusion

Gradient du potentiel chimique : µA (T, nA) à température constante

∇µA =
∂µA
∂nA

∇nA

Loi de Fick : (12.65) deuxième formulation

jA = −D (s, nA)∇nA (12.66)

Coefficients de diffusion :

D (s, nA) = FA
∂µA
∂nA

(12.67)

Référentiel du centre de masse : une seule substance chimique

v = 0

Absence de réaction chimique : pas de densité de source de matière

σA = 0

Equation de continuité de la substance : A

∂t nA + ∇ · (nA v) = σA − ∇ · jA (11.31)
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12.4.5 Equation de la diffusion

Equation de continuité : (11.31)

∂t nA = −∇ · jA (12.68)

Loi de Fick : deuxième formulation

jA = −D∇nA (12.66)

Equation de la diffusion : substance A (12.66) dans (12.68)

∂t nA = D∇2 nA (12.69)

Cette équation a une structure analogue à l’équation (de diffusion) de la
chaleur (12.45) :

1 Grandeur diffusée : nA ↔ T

2 Coefficient de diffusion : D ↔ λ

Equation de la chaleur :

∂t T = λ∇2 T (12.45)
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12.4.5 Expérience - Diffusion de colorants liquides

On verse des colorants différents dans de l’eau. On observe la diffusion
des colorants qui se mélangent à l’eau.

Le fait que les colorants se diffusent dans l’eau signifie qu’au cours du
temps, le volume d’eau occupé par les colorants augmente et que la
densité des colorants diminue.
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12.4.6 Effet Dufour

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée au transport de chaleur dans un
milieu continu inhomogène.

Absence de transfert de matière et substance neutre :

jA = 0 et qA = 0

Densité de courant de chaleur :

jQ = T js (12.33)

Relation linéaire vectorielle :

jQ = −DA (s, nA)∇µA (12.72)

où jQ est nécessairement colinéaire à ∇µA.

Coefficient Dufour :

DA (s, nA) = T
(
LsA − Lss L

−1
sA LAA

)
(12.71)
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12.4.7 Thermophorèse

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée à la thermophorèse d’une
substance chimique neutre A dans un gradient de température.

Substance homogène neutre : état initial

∇µA = 0 et qA = 0

Relation linéaire vectorielle :

jA = −TA (s, nA) ∇T (12.75)

où jA est nécessairement colinéaire à ∇T .

Coefficient de thermophorèse :

TA (s, nA) = LAs − LAA L
−1
As Lss (12.74)

Thermophorèse et effet Soret : la thermophorèse décrit le mouvement
d’une substance sous l’effet d’un gradient de température. Il faut la
distinguer de l’effet Soret qui décrit l’état stationnaire de deux substances
différentes à la fin de la thermophorèse.
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12.4.7 Expérience - Thermophorèse

On remplit de fumée un cube de plexiglas contenant par un fil de
constantan traversé par un courant électrique.

A l’aide d’un faisceau laser défocalisé, on éclaire le fil de constantan dans
lequel circule un courant électrique. Lors de l’échauffement du fil, on
observe une absence de fumée sur plusieurs millimètres autour du fil.

Cette zone d’exclusion de la fumée est due à la thermophorèse : le
gradient de température dû à l’échauffement du fil génère une diffusion
de la fumée vers l’extérieur.
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12.4.8 Loi d’Ohm et effet Hall

Démarche : premièrement, on déduit la loi d’Ohm pour un milieu
continu en se basant sur la loi d’Ohm (3.16) pour des sous-systèmes
discrets. Deuxièmement, on établit la loi d’Ohm et l’effet Hall en se
basant sur les relations phénoménologiques linéaires vectorielles (12.13).

Système : deux sous-systèmes simples constitués d’électrons de
conduction (A = e) aux potentiels électrochimiques µ̄+

e et µ̄−e .

µ̄+
e = µ+

e + qe ϕ
+ et µ̄−e = µ−e + qe ϕ

− (12.84)

Potentiels électrochimiques : la variation du potentiel chimique est
négligeable par rapport à la variation du potentiel électrostatique

µ̄+
e − µ̄−e = µ+

e − µ−e + qe
(
ϕ+ − ϕ−

)
' qe

(
ϕ+ − ϕ−

)
(12.85)

Loi de Fick électrochimique : (3.60) µ+
e → µ̄+

e et µ−e → µ̄−e

Ie = Fe
A

`

(
µ̄+
e − µ̄−e

)
' Fe

A

`
qe

(
ϕ+ − ϕ−

)
(12.86)

Dérivée temporelle de la charge électrique : courant électrique

I = qe Ie (12.87)
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12.4.8 Loi d’Ohm et effet Hall

Conductivité électrique : électrons de conduction A = e

σ = q2e Fe

Courant électrique : discrète (12.85) et (12.87) dans (12.87)

I = σ
A

`

(
ϕ+ − ϕ−

)
(12.88)

Loi d’Ohm : discrète

∆ϕ = ϕ+ − ϕ− =
1

σ

`

A
I = ρ

`

A
I ≡ RI (12.89)

1 Coefficient de conductivité électrique : σ

2 Coefficient de résistivité électrique : ρ = σ−1

3 Aire de la paroi : A

4 Epaisseur de la paroi : `

Résistance électrique :

R = ρ
`

A
(12.90)
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12.4.8 Expérience - Loi d’Ohm

1 On mesure le courant électrique I qui parcourt un fil à l’aide d’un
ampèremètre branché en série avec le fil.

2 On mesure la tension électrique ∇ϕ = ϕ+ − ϕ− aux bornes du fil à
l’aide d’un voltmètre branché en parallèle avec le fil.

3 On en déduit la résistance électrique R grâce à la loi d’Ohm (12.89).

∆ϕ = ϕ+ − ϕ− =
1

σ

`

A
I = ρ

`

A︸︷︷︸
=R

I = RI
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12.4.8 Loi d’Ohm et effet Hall

Formulation continue : on considère que le système est inhomogène et
que le potentiel électrostatique varie continument et linéairement du
potentiel électrostatique maximal ϕ+ à gauche au potentiel
électrostatique minimal ϕ− à droite. Soit ` la longueur entre les deux
extrémités du système et r̂ le vecteur unitaire orienté de gauche à droite.

A

A

Milieu continu

Système discret

j+

j+ j
_

j
_

r̂

jq

I
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12.4.8 Loi d’Ohm et effet Hall

A

A

Milieu continu

Système discret

j+

j+ j
_

j
_

r̂

jq

I

Gradient de potentiel électrostatique : orienté sens croissant de ϕ

∇ϕ = − ϕ+ − ϕ−

`
r̂ (12.91)

Densité de courant électrique : orienté sens décroissant de ϕ

jq =
I

A
r̂ (12.92)

Loi d’Ohm : continue (12.89) et (12.91) dans (12.92)

jq = −σ∇ϕ (12.93)
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12.4.8 Loi d’Ohm et effet Hall

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.13) décrivent l’irréversibilité associée au transport d’électrons de
conduction dans un métal (A = e).

Température uniforme : isotherme

∇T = 0

Densité de courant électrique :

jq = qe je (12.86)

Relation linéaire vectorielle : (12.86) dans (12.21)

jq = −σ (s, ne, q,B) ·∇ϕ (12.94)

où jq n’est pas nécessairement colinéaire à ∇ϕ.

Tenseur de conductivité électrique : isotherme

σ (s, ne, qe,B) = q2e Lee (12.95)

Tenseur de résistivité électrique : isotherme

ρ (s, ne, qe,B) = σ−1 (s, ne, qe,B) =
1

q2e
L−1ee
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12.4.8 Loi d’Ohm et effet Hall

Relation linéaire vectorielle inverse : (12.94)

∇ϕ = −ρ (s, ne, qe,B) · jq (12.96)

Relation linéaire vectorielle : (12.96) décrit

1 Loi d’Ohm : ∇ϕ est colinéaire à jq

2 Effet Hall : ∇ϕ est orthogonal à jq

Effet Hall : (12.96) champ d’induction magnétique B orthogonal à jq

∇ϕ = − ρH (s, ne, qe)
(
jq × B̂

)
où B̂ = B/‖B‖ (12.97)

jq

Ohm

x̂

ŷ

ẑ

s
r

jq

Hall

x̂

ŷ

ẑ
B
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12.4.8 Expérience - Effet Hall

On fait passer un courant électrique I dans un conducteur (germanium).
On approche un aimant du conducteur qui génère un champ d’induction
magnétique B dans une direction orthogonale au courant. Les extrémités
de l’axe orthogonal au plan généré par le courant et le champ d’induction
magnétique sont reliées à un circuit contenant un ampèremètre.

Lorsqu’on approche l’aimant du conducteur, on observe un courant
électrique dans le circuit contenant l’ampèremètre dû à la tension de Hall
∆ϕ générée dans le conducteur.
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12.4.9 Effet Ettingshausen

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée au transport de charge
électrique dans un milieu continu qui génère un gradient de température.

Absence de transfert de chaleur : adiabatique

jQ = 0

Densité de courant électrique : électrons de conduction A = e

jq = qe je

Relation linéaire vectorielle : (12.21)

∇T = −E (s, nA, q,B) · jq (12.100)

où jq est pas colinéaire à ∇T .

Tenseur d’Ettingshausen :

E (s, nA, q,B) ≡ 1

qA

(
LsA − LAA · L−1sA · Lss

)−1
(12.101)
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12.4.9 Effet Ettingshausen

Relation linéaire vectorielle :

∇T = −E (s, nA, q,B) · jq (12.100)

où jq est pas colinéaire à ∇T .

Effet Ettingshausen : (12.100) champ d’induction magnétique B
orthogonal à jq

∇T = −E (s, ne, q)
(
jq × B̂

)
où B̂ = B/‖B‖ (12.102)

jq

Ettingshausen

x̂

ŷ

ẑ
B
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12.4.10 Effet Seebeck et effet Nernst

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée à la thermoélectricité due au
transport d’électrons de conduction dans un métal (A = e).

Absence de courant de matière : où A = e

je = 0

Potentiel chimique uniforme :

∇µe = 0

Relation linéaire vectorielle : (12.21)

∇ϕ = − ε (s, ne, qe,B) ·∇T (12.105)

Tenseur de Seebeck :

ε (s, ne, qe,B) =
1

qe
L−1ee · Lse (12.106)
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12.4.10 Effet Seebeck et effet Nernst

Relation linéaire vectorielle : (12.105) décrit

1 Effet Seebeck : ∇ϕ est colinéaire à ∇T

2 Effet Nernst : ∇ϕ est orthogonal à ∇T

Effet Seebeck :

∇ϕ = − ε (s, ne, qe) ∇T (12.108)

Effet Nernst : champ d’induction magnétique B orthogonal à ∇T

∇ϕ = − εN (s, ne, qe)
(
∇T × B̂

)
où B̂ = B/‖B‖ (12.107)

Seebeck

x̂

ŷ

ẑ

e Nernst

x̂

ŷ

ẑ
B
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12.4.11 Relations phénoménologiques dans un métal

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.21) décrivent l’irréversibilité associée au transport d’électrons de
conduction dans un métal (A = e).

Relations phénoménologiques linéaires : (12.21) où A = e{
js = −Lss∇T − Lse∇ µ̄e

je = −Lse∇T − Lee∇ µ̄e
(12.110)

Coefficient phénoménologique : (12.99) où A = e

Lee =
σ

q2e
(12.111)

Coefficient phénoménologique : (12.106) et (12.111) où A = e

Lse = qe εLee =
σε

qe
(12.112)

Coefficient phénoménologique : (12.39), (12.111), (12.112) où A = e

Lss =
κ

T
+
L2
se

Lee
=
κ

T
+ σε2 (12.113)
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12.4.11 Relations phénoménologiques dans un métal

Relations phénoménologiques : (12.111) - (12.113) dans (12.110)
js = −

( κ
T

+ σε2
)
∇T − σε

qe
∇ µ̄e

je = − σε

qe
∇T − σ

q2e
∇ µ̄e

(12.114)

Potentiel électrochimique :

µ̄e = µe + qeϕ (12.115)

Gradient de potentiel chimique : négligeable (12.115) et qe = cste

∇ µ̄e = ∇µe + qe∇ϕ ' qe∇ϕ

Relations phénoménologiques : (12.114)
js = − κ

T
∇T + ε qe je

je = − σε

qe
∇T − σ

qe
∇ϕ

(12.116)
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12.4.11 Relations phénoménologiques dans un métal

Densité de courant de chaleur :

jQ = T js (12.33)

Densité de courant électrique :

jq = qe je

Relations phénoménologiques : (12.116) dans (12.33){
jQ = −κ∇T + T ε jq

jq = −σε∇T − σ∇ϕ
(12.117)

1 Si jq = 0, la première équation se réduit à la loi de Fourier.

2 Le terme T ε jq décrit le transfert de chaleur dû au courant électrique.

3 Si ∇T = 0, la deuxième équation se réduit à la loi d’Ohm.

4 Le terme −σε∇T décrit le courant électrique généré par un gradient de
température (combinaison de la loi d’Ohm et de l’effet Seebeck).
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12.4.12 Effet Thomson et effet Joule

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.117) décrivent l’irréversibilité associée au transport d’électrons de
conduction dans un métal (A = e).

Courant électrique nul : flux d’électrons de conduction entrant et
sortant égaux

I = −
∮
S

dS · jq = −
∫
V

dV (∇ · jq) = 0 (12.118)

Densité de courant électrique : stationnaire

∇ · jq = 0 (12.119)

Equation de continuité de l’entropie : métal immobile : v = 0

∂t s+ ∇ · js = σs > 0 (10.120)

Densité de puissance dissipée :

ps = T ∂t s = T (σs − ∇ · js) (12.121)
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12.4.12 Effet Thomson et effet Joule

Densité de puissance dissipée :

ps = T ∂t s = T (σs − ∇ · js) (12.121)

Densité de source d’entropie : (11.100) où ∇µe �∇ϕ

σs =
1

T

(
js · (−∇T ) + jq · (−∇ϕ)

)
(12.122)

Densité de puissance : (12.122) dans (12.121)

ps = js · (−∇T ) + jq · (−∇ϕ)− T ∇ · js (12.123)

Densité de courant de chaleur :

jQ = T js (11.120)

Densité de puissance : (11.120) dans (12.123)

ps = −∇ · (T js) + jq · (−∇ϕ) = −∇ · jQ + jq · (−∇ϕ) (12.124)

Relations phénoménologiques :{
jQ = −κ∇T + T ε jq

jq = −σε∇T − σ∇ϕ
(12.117)
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12.4.12 Effet Thomson et effet Joule

Densité de puissance : (12.117) dans (12.124) où ρ = σ−1

ps = −∇ · (−κ∇T + T ε jq) + jq · (ρ jq + ε∇T ) (12.125)

Densité de courant électrique : stationnaire

∇ · jq = 0 (12.119)

Courant électrique stationnaire : (12.119)

∇ · (T ε jq) = T jq ·∇ ε+ ε jq ·∇T (12.126)

Densité de puissance dissipée : (12.126) dans (12.125) où ∇κ = 0

ps = κ∇2 T − T jq ·∇ ε+ ρ j2q (12.127)

Gradient du coefficient Seebeck : où ε ≡ ε (T )

∇ ε =
∂ε

∂T
∇T (12.128)
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12.4.12 Effet Thomson et effet Joule

Densité de puissance : (12.128) dans (12.127)

ps = κ∇2 T − τ jq ·∇T + ρ j2q (12.129)

Coefficient Thomson :

τ ≡ T ∂ε

∂T
(12.130)

1 Loi de Fourier : le terme κ∇2 T est la densité puissance dissipée par un
courant de chaleur dans un métal de conductivité thermique κ soumis à
un gradient de température inhomogène.

2 Effet Thomson : le terme − τ jq ·∇T est la densité puissance dissipée
par un courant électrique en présence d’un gradient de température dans
un métal de coefficient Thomson τ .

3 Effet Joule : le terme ρ j2
q est la densité puissance dissipée par un courant

électrique dans un métal de résistivité électrique ρ = σ−1.
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12.4.13 Effet Peltier

T

Phénoménologie : les relations phénoménologiques linéaires vectorielles
(12.117) décrivent l’irréversibilité associée au transport de chaleur dans
une jonction isotherme à température T entre deux métaux.

Relation phénoménologique linéaire : (12.117) isotherme : ∇T = 0

jQA = TεA jqA

jQB = TεB jqB
(12.134)

Continuité de la densité de courant électrique : jonction

jq = jqA = jqB (12.135)
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12.4.13 Effet Peltier

T

Discontinuité de la densité de courant de chaleur : jonction

εA 6= εB ainsi jQA 6= jQB (12.136)

Effet Peltier :

jQB − jQA = ΠAB jq (12.137)

L’effet Peltier est le transfert de chaleur IQ (positif ou négatif) à
température constante T entre le système et l’environnement.

Coefficient Peltier :

ΠAB = T (εB − εA) (12.138)

L’effet Peltier est dû à la jonction entre deux matériaux alors que l’effet
Seebeck est dû au gradient de température dans un seul matériau.
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12.5 Dynamique des fluides

12.5 Dynamique des fluides
12.5.1 Equation de Navier-Stokes
12.5.2 Théorème de Bernoulli
12.5.3 Loi de l’hydrostatique
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12.5.1 Equation de Navier-Stokes

Equation de Navier-Stokes : décrit le mouvement d’un fluide visqueux
constitué d’une seule substance chimique électriquement neutre soumise
à son poids et à des contraintes internes de cisaillement.

Tenseur des contraintes : généralisation de (11.93)

τ = (τ − p) 1 + τ ′ (12.139)

où τ ′ est le tenseur symétrique de trace nulle qui rend compte du
cisaillement et des déformations irréversibles qui conservent le volume.

Densité de force extérieure : densité de poids∑
f ext = m g (12.140)

Théorème du centre de masse :

mv̇ =
∑

f ext + ∇ · τ (11.42)

Théorème du centre de masse : (12.139) et (12.140) dans (11.42)

mv̇ = m g − ∇ p+ ∇ · τ ′ + ∇ τ (12.141)
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12.5.1 Equation de Navier-Stokes

Densité de puissance dissipée : le cisaillement du fluide ajoute le terme
de densité de puissance dissipée τ ′ : (∇v) dans la densité de source
d’entropie (11.100). Le tenseur symétrique de trace nulle τ est une
densité de courant tensoriel. Le gradient tensoriel du champ de vitesses
∇v est une force tensorielle généralisée.

Relation phénoménologique linéaire tensorielle :

τ ′ = µ (s, nA) ∇v (12.142)

où µ (s, nA) est le coefficient scalaire de viscosité dynamique.

Relation phénoménologique linéaire scalaire : (12.27)

τ = η (s, nA) ∇ · v (12.143)

où η (s, nA) est le coefficient scalaire de viscosité volumique.

Théorème du centre de masse : (12.142) et (12.143) dans (12.141)

mv̇ = m g − ∇ p+ ∇ ·
(
µ (∇v)

)
+ ∇

(
η ∇ · v

)
(12.144)
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12.5.1 Equation de Navier-Stokes

Gradients de viscosités : négligeables

∇µ = 0 et ∇ η = 0

Equation de Navier-Stokes : fluide compressible (12.144)

mv̇ = m g − ∇ p+ µ∇2v + (µ+ η)∇ (∇ · v) (12.145)

Fluide incompressible : taux d’expansion nul

∇ · v = 0

Equation de Navier-Stokes : fluide incompressible (12.144)

mv̇ = m g − ∇ p+ µ∇2v (12.146)
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12.5.2 Théorème de Bernoulli

Théorème de Bernoulli : décrit le mouvement réversible d’un fluide
incompressible constitué d’une seule substance chimique neutre soumise à
son propre poids en absence de cisaillement et de frottement.

Théorème du centre de masse : (12.141) avec τ ′ = 0 et τ = 0

mv̇ = m g − ∇ p (12.147)

Densité de puissance : (12.147) produit scalaire avec la vitesse v

mv̇ · v = m g · v − ∇ p · v (12.148)

Equation de continuité de la masse :

ṁ+ (∇ · v)m = 0 (11.41)

Conservation de la masse : (11.41) fluide incompressible

∇ · v = 0 ainsi ṁ = 0 (12.149)
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12.5.2 Théorème de Bernoulli

Densité de puissance :

mv̇ · v = m g · v − ∇ p · v (12.148)

Densité de puissance : ṁ = 0 ainsi m = cste

mv̇ · v =
d

dt

(
1

2
mv2

)
(12.150)

Densité de puissance : ṁ = 0 ainsi m = cste

m g · v =
d

dt
(m g · r) (12.151)

Densité de puissance : avec p (r)

∇ p · v =
dp

dr
· dr
dt

=
dp

dt
(12.152)

Densité de puissance : (12.150) - (12.152) dans (12.148)

d

dt

(
1

2
mv2 − m g · r + p

)
= 0 (12.153)
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12.5.2 Théorème de Bernoulli

Densité d’énergie : (12.153) intégrée par rapport au temps t

1

2
mv2 − m g · r + p = cste (12.154)

Champ gravitationnel et position : coordonnées cartésiennes

g = − g ẑ et r = x x̂+ y ŷ + z ẑ (12.155)

Théorème de Bernoulli : (12.155) dans (12.154)

1

2
mv2 +mg z + p = cste (12.156)
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12.5.2 Expérience - Effet Venturi

Effet Venturi : lorsqu’un flux d’air stationnaire passe dans un tube dont
le diamètre diminue, sa vitesse augmente. D’après le théorème de
Bernoulli sa pression diminue. Cette dépression au centre du tube est
mise en évidence par le niveau de liquide rouge aspiré dans des tuyaux
reliés au tube.

Vaporisateur : certains vaporisateurs utilisent l’effet Venturi. Lorsque le
diamètre diminue brusquement à la fin du tube, la dépression aspire de
l’air, souvent saturé d’un parfum, qui peut alors se diffuser.
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12.5.2 Expérience - Cavitation

Cavitation : lorsqu’un milieu liquide initialement homogène est soumis à
une dépression, il peut y avoir une transition de phase qui génère de
petites bulles de gaz.

Expérience : on fait passer un courant d’eau dans un tube à
étranglement et on observe l’apparition de bulles de gaz sombres à la
sortie du rétrécissement.
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12.5.3 Loi de l’hydrostatique

Hydrostatique : en statique, la vitesse d’un fluide est nulle, i.e v = 0. Le
théorème de Bernoulli (12.156) se réduit alors à,

p+mg z = cste (12.157)

Niveaux : z1 et z2 dans un fluide où h = z2 − z1 > 0

p1 +mg z1 = p2 +mg z2 (12.158)

Loi de l’hydrostatique : pression de la colonne de fluide de hauteur h

∆ p = p1 − p2 = mg (z2 − z1) = mg h (12.159)
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12.6 Application

12.6 Application
12.6.1 Boucle de Seebeck
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12.6.1 Boucle de Seebeck

T

T+DT
A

B

Effet Seebeck : dans une boucle métallique formée de deux métaux A
et B, un courant électrique circule quand la jonction (1) est chauffée à
une température T + ∆T alors que la jonction (2) a une température T .

Déviation de l’aiguille : le champ d’induction magnétique généré par le
courant circulant dans la boucle provoque une déviation de l’aiguille
magnétique. C’est l’effet que Seebeck a observé !

Dr. Sylvain Bréchet 12 Thermodynamique des processus irréversibles 77 / 82



12.6.1 Boucle de Seebeck

Densités de courant électrique : relations phénoménologiques (12.117)

jqA = σA εA (−∇TA) + σA (−∇ϕA) (12.161)

jqB = −σB εB∇TB − σB∇ϕB (12.162)

Géométrie des métaux : longueur et section

` =

∫ `

0

dr · r̂ et A =

∫
S

dS · r̂ (12.163)

où r̂ est le vecteur unité orienté dans le sens trigonométrique le long de
la boucle. Les vecteurs infinitésimaux dr et dS ont la même orientation.

Continuité : densité de courant électrique

jq = jqA = jqB

Continuité : courant électrique intégrée sur la surface

I =

∫
S

jq · dS =

∫
S

jqA · dS =

∫
S

jqB · dS (12.167)
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12.6.1 Boucle de Seebeck

Différence de température :

∆T =

∫ `

0

dr · (−∇TA) =

∫ `

0

dr ·∇TB > 0 (12.168)

Différences de potentiel électrostatique :

∆ϕA =

∫ `

0

dr · (−∇ϕA) et ∆ϕB =

∫ `

0

dr ·∇ϕB (12.169)

Relations phénoménologiques : intégrées sur le volume∫
S

jqA · dS
∫ `

0

dr · r̂ = σA εA

∫ `

0

dr · (−∇TA)

∫
S

dS · r̂

+ σA

∫ `

0

dr · (−∇ϕA)

∫
S

dS · r̂∫
S

jqB · dS
∫ `

0

dr · r̂ = −σB εB
∫ `

0

dr ·∇TB

∫
S

dS · r̂

− σB

∫ `

0

dr ·∇ϕB

∫
S

dS · r̂

(12.166)

où l’élément de volume infinitésimal dV = dS · dr.
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12.6.1 Boucle de Seebeck

Différence de potentiel électrostatique : les potentiels électrostatiques
sont identiques aux jonctions par contact électrique.

∆ϕ = ∆ϕA = ∆ϕB (12.170)

Courant électrique : (12.167) - (12.170) dans (12.166)

I =
A

`

(
σA εA ∆T + σA ∆ϕ

)
I = − A

`

(
σB εB ∆T + σB ∆ϕ

) (12.171)

Combinaison linéaire : (12.171)

(σA + σB) I =
A

`
σA σB (εA − εB) ∆T (12.172)

Effect Seebeck : (12.172) remis en forme

(εA − εB) ∆T =
σA + σB
σA σB

`

A
I (12.173)
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12.6.1 Boucle de Seebeck

Effect Seebeck : (12.173)

∆ϕ = (εA − εB) ∆T =

(
1

σA
+

1

σB

)
`

A
I = (ρA + ρB)

`

A
I (12.174)

Coefficient Seebeck équivalent : métaux A et B reliés en série

ε = εA − εB (12.175)

Conductivité et résistivité équivalentes : métaux A et B reliés en série

1

σ
=

1

σA
+

1

σB
et ρ = ρA + ρB (12.176)

Loi d’Ohm : (12.174)

∆ϕ = ε∆T =
1

σ

`

A
I = ρ

`

A
I = RI (12.177)
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12.6.1 Expérience - Boucle de Seebeck

T

T+DT
A

B

Une aiguille métallique aimantée (boussole) montée dans un cadre
constitué de constantan et de cuivre formant une boucle verticale peut
osciller horizontalement. Initialement, elle point vers le nord.

En chauffant une jonction et en maintenant l’autre jonction à
température ambiante, on constate que l’aiguille est déviée.

La tension générée par effet Seebeck (thermoélectricité) à la jonction
chaude permet la circulation d’un courant électrique dans le circuit. La
circulation de ce courant génère un champ d’induction magnétique qui
dévie l’aiguille métallique aimantée.
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